Scientists may have identified echoes of ancient Earth

A group of scientists believe that a previously unexplained isotopic ratio from deep within the Earth may be a signal from material from the time before the Earth collided with another planet-sized body, leading to the creation of the Moon. This may represent the echoes of the ancient Earth, which existed prior to the proposed collision 4.5 billion years ago. This work is being presented at the Goldschmidt conference in Sacramento, California.

The currently favoured theory says that the Moon was formed 4.5 billion years ago, when the Earth collided with a Mars-sized mass, which has been given the name “Theia”. According to this theory, the heat generated by the collision would have caused the whole planet to melt, before some of the debris cooled and spun off to create the Moon.

Now however, a group of scientists from Harvard University believe that they have identified a sign that only part of the Earth melted, and that an ancient part still exists within the Earth’s mantle.

According to lead researcher Associate Professor Sujoy Mukhopadhyay (Harvard):

“The energy released by the impact between the Earth and Theia would have been huge, certainly enough to melt the whole planet. But we believe that the impact energy was not evenly distributed throughout the ancient Earth. This means that a major part of the impacted hemisphere would probably have been completely vaporised, but the opposite hemisphere would have been partly shielded, and would not have undergone complete melting”.

The team has analysed the ratios of noble gas isotopes from deep within the Earth’s mantle, and has compared these results to isotope ratios closer to the surface. The found that 3He to 22Ne ratio from the shallow mantle is significantly higher than the equivalent ratio in the deep mantle.

Professor Mukhopadhyay commented, “This implies that the last giant impact did not completely mix the mantle and there was not a whole mantle magma ocean”.

Additional evidence comes from analysis of the 129-Xenon to 130-Xenon ratio. It is known that material brought to the surface from the deep mantle (via mantle plumes) has a lower ratio than that normally found nearer the surface, for example in the basalts from mid-ocean ridges. Since 129-Xenon is produced by radioactive decay of 129-Iodine, these xenon isotopes put a time stamp on the formation age of the ancient parcel of mantle to within the first 100 million years of Earth’s history.

Professor Mukhopadhyay continued “The geochemistry indicates that there are differences between the noble gas isotope ratios in different parts of the Earth, and these need to be explained. The idea that a very disruptive collision of the Earth with another planet-sized body, the biggest event in Earth’s geological history, did not completely melt and homogenize the Earth challenges some of our notions on planet formation and the energetics of giant impacts. If the theory is proven correct, then we may be seeing echoes of the ancient Earth, from a time before the collision”.

Commenting, Professor Richard Carlson (Carnegie Institute of Washington), Past President of the Geochemical Society said:

“This exciting result is adding to the observational evidence that important aspects of Earth’s composition were established during the violent birth of the planet and is providing a new look at the physical processes by which this can occur”.

Aiming to improve the air quality in underground mines

Reducing diesel particulate matter emitted by the diesel powered vehicles used for underground mine work is the aim of researchers from Monash University. -  Monash University
Reducing diesel particulate matter emitted by the diesel powered vehicles used for underground mine work is the aim of researchers from Monash University. – Monash University

Reducing diesel particulate matter (DPM) exposure to miners in underground coalmines will be a step closer to reality with the awarding of a research grant to engineers from Monash University.

The $275,000 grant from the Australian Coal Association Research Programme (ACARP) goes to a multi-disciplinary team from the Maintenance Technology Institute (MTI), the Laboratory for Turbulence Research in Aerospace and Combustion (LTRAC) and the Australian Pulp and Paper Institute (APPI).

The grant will allow them to collaborate with leading industry original equipment manufacturers and mine site personnel as part of a broader long-term strategy to minimise DPM emissions in the mining industry.

Joint project leader Associate Professor Damon Honnery said it was important to find a way to reduce miners exposure to DPM which is both effective and cost efficient.

“DPM has recently been classified as a Group 1 carcinogen by the World Health Organisation, and is a significant problem for operators of underground coalmines,” Associate Professor Honnery said.

“Diesel powered vehicles are widely used for underground mine work and are generally fitted with diesel particulate filters (DPFs) to reduce particulate emissions which have very limited service life – typically around one or two shifts – resulting in excessive costs and ineffective control of DPM.”

The new project will complement an earlier ACARP project by the team that focussed on improving the service life of DPFs used in underground coalmines, which found reconditioned filters could be reused up to five times without compromising filter integrity or DPM filtration efficiency.

Fellow Project leader Dr Daya Dayawansa said while the earlier results offer a viable short-term solution to the DPM problem, a medium-term solution requires the careful examination and possible redesign of the entire exhaust conditioning system, in combination with improved diesel particulate filters.

Ultimately, the researchers believe that many diesel engines used in underground mining could be replaced by electric motors, despite the stringent regulations relating to electric systems in the potentially explosive underground atmosphere.

“While filter use will continue to reduce the impact of DPM emission in underground mines, the only truly effective long term solution is to remove the source from the mines altogether. Working with our partners, we hope to achieve this through the development of electric powered vehicles,” Dr Dayawansa said.

New isotopic evidence supporting moon formation via Earth collision with planet-sized body

A new series of measurements of oxygen isotopes provides increasing evidence that the Moon formed from the collision of the Earth with another large, planet-sized astronomical body, around 4.5 billion years ago. This work will be published in Science* on 6th June, and will be presented to the Goldschmidt geochemistry conference in California on 11th June.

Most planetary scientists believe that the Moon formed from an impact between the Earth and a planet-sized body, which has been given the name Theia. Efforts to confirm that the impact had taken place had centred on measuring the ratios between the isotopes of oxygen, titanium, silicon and others. These ratios are known to vary throughout the solar system, but their close similarity between Earth and Moon conflicted with theoretical models of the collision that indicated that the Moon would form mostly from Theia, and thus would be expected to be compositionally different from the Earth.

Now a group of German researchers, led by Dr. Daniel Herwartz, have used more refined techniques to compare the ratios of 17O/16O in lunar samples, with those from Earth. The team initially used lunar samples which had arrived on Earth via meteorites, but as these samples had exchanged their isotopes with water from Earth, fresher samples were sought. These were provided by NASA from the Apollo 11, 12 and 16 missions; they were found to contain significantly higher levels of 17O/16O than their Earthly counterparts.

Dr Herwartz said
“The differences are small and difficult to detect, but they are there. This means two things; firstly we can now be reasonably sure that the Giant collision took place. Secondly, it gives us an idea of the geochemistry of Theia. Theia seems to have been similar to what we call E-type chondrites**.If this is true, we can now predict the geochemical and isotopic composition of the Moon, because the present Moon is a mixture of Theia and the early Earth. The next goal is to find out how much material of Theia is in the Moon”.

Most models estimate that the Moon it is composed of around 70% to 90% material from Theia, with the remaining 10% to 30% coming from the early Earth. However, some models argue for as little as 8% Theia in the Moon. Dr Herwartz said that the new data indicate that a 50:50 mixture seems possible, but this needs to be confirmed.

The team used an advanced sample preparation technique before measuring the samples via stable isotope ratio mass spectrometry, which showed a 12 parts per million (± 3 ppm) difference in 17O/16O ratio between Earth and Moon.

Early Earth

These are approximately 1.8-billion-year-old ferruginous stromatolites from the Biwabik Iron Formation, Minn., USA. -  E. Calvin Alexander Jr. for GSA Special Paper 504
These are approximately 1.8-billion-year-old ferruginous stromatolites from the Biwabik Iron Formation, Minn., USA. – E. Calvin Alexander Jr. for GSA Special Paper 504

The range of conditions and compositions that have been proposed for Earth’s early surface and atmosphere is considerable, from highly reducing and rich in organic compounds to essentially as oxidizing as today. Investigations have been guided by geological evidence, cosmochemical analysis, and comparisons to other terrestrial bodies. This new Special Paper from The Geological Society of America, edited by George H. Shaw of Union College, presents and discusses several, sometimes contradictory, models for early Earth.

Uniquely compiled as a collection of papers first presented at a Pardee Symposium at the 2011 GSA Annual Meeting, the book’s primary chapters are accompanied by a commentary and followed by a transcript of the ensuing discussion at the meeting. An interpretive chapter discusses the material presented at the symposium and summarizes at least one perspective of the current status of the field.

As for the substance of the topic discussed, Shaw notes that “an extremely broad range of viewpoints is held by geologists, geochemists, atmospheric chemists, climate scientists, and various others, and informed by their own perspectives and the data they feel are most critical to the discussion.” He writes that “In some cases, there are disparate inferences and conclusions drawn from more or less the same basic data. While this may seem surprising, it is, perhaps, a consequence of the nature of such an ancient and often skimpy geologic record.”

In a summary of this 13-chapter book, Shaw writes humbly, “Although it is unlikely that all ? of the views presented can be correct, there appears to be at least some possibility that some ? fraction ? may have some validity in forming a picture of an important period of Earth’s history, one in which it is highly probable that life began its long journey.”

Modern ocean acidification is outpacing ancient upheaval, study suggests

<IMG SRC="/Images/964394569.jpg" WIDTH="350" HEIGHT="237" BORDER="0" ALT="The deep-sea benthic foram Aragonia velascoensis went extinct about 56 million years ago as the oceans rapidly acidified. – Ellen Thomas/Yale University”>
The deep-sea benthic foram Aragonia velascoensis went extinct about 56 million years ago as the oceans rapidly acidified. – Ellen Thomas/Yale University

Some 56 million years ago, a massive pulse of carbon dioxide into the atmosphere sent global temperatures soaring. In the oceans, carbonate sediments dissolved, some organisms went extinct and others evolved.

Scientists have long suspected that ocean acidification played a part in the crisis-similar to today, as manmade CO2 combines with seawater to change its chemistry. Now, for the first time, scientists have quantified the extent of surface acidification from those ancient days, and the news is not good: the oceans are on track to acidify at least as much as they did then, only at a much faster rate.

In a study published in the latest issue of Paleoceanography, the scientists estimate that surface ocean acidity increased by about 100 percent in a few thousand years or more, and stayed that way for the next 70,000 years. In this radically changed environment, some creatures died out while others adapted and evolved. The study is the first to use the chemical composition of fossils to reconstruct surface ocean acidity at the Paleocene-Eocene Thermal Maximum (PETM), a period of intense warming on land and throughout the oceans due to high CO2.

“This could be the closest geological analog to modern ocean acidification,” said study coauthor Bärbel Hönisch, a paleoceanographer at Columbia University’s Lamont-Doherty Earth Observatory. “As massive as it was, it still happened about 10 times more slowly than what we are doing today.”

The oceans have absorbed about a third of the carbon humans have pumped into the air since industrialization, helping to keep temperatures lower than they would be otherwise. But that uptake of carbon has come at a price. Chemical reactions caused by that excess CO2 have made seawater grow more acidic, depleting it of the carbonate ions that corals, mollusks and calcifying plankton need to build their shells and skeletons.

In the last 150 years or so, the pH of the oceans has dropped substantially, from 8.2 to 8.1–equivalent to a 25 percent increase in acidity. By the end of the century, ocean pH is projected to fall another 0.3 pH units, to 7.8. While the researchers found a comparable pH drop during the PETM–0.3 units–the shift happened over a few thousand years.

“We are dumping carbon in the atmosphere and ocean at a much higher rate today-within centuries,” said study coauthor Richard Zeebe, a paleoceanographer at the University of Hawaii. “If we continue on the emissions path we are on right now, acidification of the surface ocean will be way more dramatic than during the PETM.”

Ocean acidification in the modern ocean may already be affecting some marine life, as shown by the partly dissolved shell of this planktic snail, or pteropod, caught off the Pacific Northwest.

The study confirms that the acidified conditions lasted for 70,000 years or more, consistent with previous model-based estimates.

“It didn’t bounce back right away,” said Timothy Bralower, a researcher at Penn State who was not involved in the study. “It took tens of thousands of years to recover.”

From seafloor sediments drilled off Japan, the researchers analyzed the shells of plankton that lived at the surface of the ocean during the PETM. Two different methods for measuring ocean chemistry at the time-the ratio of boron isotopes in their shells, and the amount of boron –arrived at similar estimates of acidification. “It’s really showing us clear evidence of a change in pH for the first time,” said Bralower.

What caused the burst of carbon at the PETM is still unclear. One popular explanation is that an overall warming trend may have sent a pulse of methane from the seafloor into the air, setting off events that released more earth-warming gases into the air and oceans. Up to half of the tiny animals that live in mud on the seafloor-benthic foraminifera-died out during the PETM, possibly along with life further up the food chain.

Other species thrived in this changed environment and new ones evolved. In the oceans, dinoflagellates extended their range from the tropics to the Arctic, while on land, hoofed animals and primates appeared for the first time. Eventually, the oceans and atmosphere recovered as elements from eroded rocks washed into the sea and neutralized the acid.

Today, signs are already emerging that some marine life may be in trouble. In a recent study led by Nina Bednarsek at the U.S. National Oceanic and Atmospheric Administration, more than half of the tiny planktic snails, or pteropods, that she and her team studied off the coast of Washington, Oregon and California showed badly dissolved shells. Ocean acidification has been linked to the widespread death of baby oysters off Washington and Oregon since 2005, and may also pose a threat to coral reefs, which are under additional pressure from pollution and warming ocean temperatures.

“Seawater carbonate chemistry is complex but the mechanism underlying ocean acidification is very simple,” said study lead author Donald Penman, a graduate student at University of California at Santa Cruz. “We can make accurate predictions about how carbonate chemistry will respond to increasing carbon dioxide levels. The real unknown is how individual organisms will respond and how that cascades through ecosystems.”

Solving the puzzle of ice age climates

The paleoclimate record for the last ice age – a time 21,000 years ago called the “Last Glacial Maximum” (LGM) – tells of a cold Earth whose northern continents were covered by vast ice sheets. Chemical traces from plankton fossils in deep-sea sediments reveal rearranged ocean water masses, as well as extended sea ice coverage off Antarctica. Air bubbles in ice cores show that carbon dioxide in the atmosphere was far below levels seen before the Industrial Revolution.

While ice ages are set into motion by Earth’s slow wobbles in its transit around the sun, researchers agree that the solar-energy decrease alone wasn’t enough to cause this glacial state. Paleoclimatologists have been trying to explain the actual mechanism behind these changes for 200 years.

“We have all these scattered pieces of information about changes in the ocean, atmosphere, and ice cover,” says Raffaele Ferrari, the Breene M. Kerr Professor of Physical Oceanography in MIT’s Department of Earth, Atmospheric and Planetary Sciences, “and what we really want to see is how they all fit together.”

Researchers have always suspected that the answer must lie somewhere in the oceans. Powerful regulators of Earth’s climate, the oceans store vast amounts of organic carbon for thousands of years, keeping it from escaping into the atmosphere as CO2. Seawater also takes up CO2 from the atmosphere via photosynthesizing microbes at the surface, and via circulation patterns.

In a new application of ocean physics, Ferrari, along with Malte Jansen PhD ’12 of Princeton University and others at the California Institute of Technology, have found a new approach to the puzzle, which they detail in this week’s Proceedings of the National Academy of Sciences.

Lung of the ocean

The researchers focused on the Southern Ocean, which encircles Antarctica – a critical part of the carbon cycle because it provides a connection between the atmosphere and the deep ocean abyss. Ruffled by the winds whipping around Antarctica, the Southern Ocean is one of the only places where the deepest carbon-rich waters ever rise to the surface, to “breathe” CO2 in and out.

The modern-day Southern Ocean has a lot of room to breathe: Deeper, carbon-rich waters are constantly mixing into the waters above, a process enhanced by turbulence as water runs over jagged, deep-ocean ridges.

But during the LGM, permanent sea ice covered much more of the Southern Ocean’s surface. Ferrari and colleagues decided to explore how that extended sea ice would have affected the Southern Ocean’s ability to exchange CO2 with the atmosphere.

Shock to the system

This question demanded the use of the field’s accumulated knowledge of ocean physics. Using a mathematical equation that describes the wind-driven ocean circulation patterns around Antarctica, the researchers calculated the amount of water that was trapped under the sea ice by currents in the LGM. They found that the shock to the entire Earth from this added ice cover was massive: The ice covered the only spot where the deep ocean ever got to breathe. Since the sea ice capped these deep waters, the Southern Ocean’s CO2 was never exhaled to the atmosphere.

The researchers then saw a link between the sea ice change and the massive rearrangement of ocean waters that is evident in the paleoclimate record. Under the expanded sea ice, a greater amount of upwelled deep water sank back downward. Southern Ocean abyssal water eventually filled a greater volume of the entire midlevel and lower ocean – lifting the interface between upper and lower waters to a shallower depth, such that the deep, carbon-rich waters lost contact with the upper ocean. Breathing less, the ocean could store a lot more carbon.

A Southern Ocean suffocated by sea ice, the researchers say, helps explain the big drop in atmospheric CO2 during the LGM.

Dependent relationship

The study suggests a dynamic link between sea-ice expansion and the increase of ocean water insulated from the atmosphere, which the field has long treated as independent events. This insight takes on extra relevance in light of the fact that paleoclimatologists need to explain not just the very low levels of atmospheric CO2 during the last ice age, but also the fact that this happened during each of the last four glacial periods, as the paleoclimate record reveals.

Ferrari says that it never made sense to argue that independent changes drew down CO2 by the exact same amount in every ice age. “To me, that means that all the events that co-occurred must be incredibly tightly linked, without much freedom to drift beyond a narrow margin,” he says. “If there is a causality effect among the events at the start of an ice age, then they could happen in the same ratio.”

Australia’s deadly eruptions the reason for the first mass extinction

A Curtin University researcher has shown that ancient volcanic eruptions in Australia 510 million years ago significantly affected the climate, causing the first known mass extinction in the history of complex life.

Published in prestigious journal Geology, Curtin’s Associate Professor Fred Jourdan, along with colleagues from several Australian and international institutions, used radioactive dating techniques to precisely measure the age of the eruptions of the Kalkarindji volcanic province.

Dr Jourdan and his team were able to prove the volcanic province occurred at the same time as the Early-Middle Cambrian extinction from 510-511 million years ago – the first extinction to wipe out complex multicellular life.

“It has been well-documented that this extinction, which eradicated 50 per cent of species, was related to climatic changes and depletion of oxygen in the oceans, but the exact mechanism causing these changes was not known, until now,” Dr Jourdan said.

“Not only were we able to demonstrate that the Kalkarindji volcanic province was emplaced at the exact same time as the Cambrian extinction, but were also able to measure a depletion of sulphur dioxide from the province’s volcanic rocks – which indicates sulphur was released into the atmosphere during the eruptions.

“As a modern comparison, when the small volcano Pinatubo erupted in 1991, the resulting discharge of sulphur dioxide decreased the average global temperatures by a few tenths of a degree for a few years following the eruption.

“If relatively small eruptions like Pinatubo can affect the climate just imagine what a volcanic province with an area equivalent to the size of the state of Western Australia can do.”

The team then compared the Kalkarindji volcanic province with other volcanic provinces and showed the most likely process for all the mass extinctions was a rapid oscillation of the climate triggered by volcanic eruptions emitting sulphur dioxide, along with greenhouse gases methane and carbon dioxide.

“We calculated a near perfect chronological correlation between large volcanic province eruptions, climate shifts and mass extinctions over the history of life during the last 550 million years, with only one chance over 20 billion that this correlation is just a coincidence,” Dr Jourdan said.

Dr Jourdan said the rapid oscillations of the climate produced by volcanic eruptions made it difficult for various species to adapt, ultimately resulting in their demise. He also stressed the importance of this research to better understand our current environment.

“To comprehend the long-term climatic and biological effects of the massive injections of gas in the atmosphere by modern society, we need to recognise how climate, oceans and ecosytems were affected in the past,” he said.

Four-billion-year-old rocks yield clues about Earth’s earliest crust

University of Alberta Ph.D. student Jesse Reimink studied some of the oldest rocks on Earth to find out how the earliest continents formed. -  Bryan Alary/University of Alberta
University of Alberta Ph.D. student Jesse Reimink studied some of the oldest rocks on Earth to find out how the earliest continents formed. – Bryan Alary/University of Alberta

It looks like just another rock, but what Jesse Reimink holds in his hands is a four-billion-year-old chunk of an ancient protocontinent that holds clues about how the Earth’s first continents formed.

The University of Alberta geochemistry student spent the better part of three years collecting and studying ancient rock samples from the Acasta Gneiss Complex in the Northwest Territories, part of his PhD research to understand the environment in which they formed.

“The timing and mode of continental crust formation throughout Earth’s history is a controversial topic in early Earth sciences,” says Reimink, lead author of a new study in Nature Geoscience that points to Iceland as a solid comparison for how the earliest continents formed.

Continents today form when one tectonic plate shifts beneath another into the Earth’s mantle and cause magma to rise to the surface, a process called subduction. It’s unclear whether plate tectonics existed 2.5 billion to four billion years ago or if another process was at play, says Reimink.

One theory is the first continents formed in the ocean as liquid magma rose from the Earth’s mantle before cooling and solidifying into a crust.

Iceland’s crust formed when magma from the mantle rises to shallow levels, incorporating previously formed volcanic rocks. For this reason, Reimink says Iceland is considered a theoretical analogue on early Earth continental crust formation.

Working under the supervision of co-author Tom Chacko, Reimink spent his summers in the field collecting rock samples from the Acasta Gneiss Complex, which was discovered in the 1980s and found to contain some of the Earth’s oldest rocks, between 3.6 and four billion years old. Due to their extreme age, the rocks have undergone multiple metamorphic events, making it difficult to understand their geochemistry, Reimink says.

Fortunately, a few rocks-which the research team dubbed “Idiwhaa” meaning “ancient” in the local Tlicho dialect-were better preserved. This provided a “window” to see the samples’ geochemical characteristics, which Reimink says showed crust-forming processes that are very similar to those occurring in present-day Iceland.

“This provides the first physical evidence that a setting similar to modern Iceland was present on the early Earth.”

These ancient rocks are among the oldest samples of protocontinental crust that we have, he adds, and may have helped jump-start the formation of the rest of the continental crust.

Reimink, who came to the U of A to work with Chacko, says the university’s lab resources are “second to none,” particularly the Ion Microprobe facility within the Canadian Centre for Isotopic Microanalysis run by co-author Richard Stern, which was instrumental to the discovery.

“That lab is producing some of the best data of its kind in the world. That was very key to this project.”