Radioactive shale gas contaminants found at wastewater discharge site

Elevated levels of radioactivity, salts and metals have been found in river water and sediments at a site where treated water from oil and gas operations is discharged into a western Pennsylvania creek.

“Radium levels were about 200 times greater in sediment samples collected where the Josephine Brine Treatment Facility discharges its treated wastewater into Blacklick Creek than in sediment samples collected just upstream of the plant,” said Avner Vengosh, professor of geochemistry and water quality at Duke University’s Nicholas School of the Environment.

The new Duke study examined the quality of shale gas wastewater from hydraulic fracturing and the stream water above and below the disposal site. The study found that some of the discharged effluent is derived from the Marcellus shale gas flowback water, which is naturally high in salinity and radioactivity.

High concentrations of some salts and metals were also observed in the stream water. “The treatment removes a substantial portion of the radioactivity, but it does not remove many of the other salts, including bromide,” Vengosh said. “When the high-bromide effluents are discharged to the stream, it increases the concentrations of bromide above the original background levels. This is significant because bromide increases the risks for formation of highly toxic disinfection byproducts in drinking water treatment facilities that are located downstream.”

“The radioactivity levels we found in sediments near the outflow are above management regulations in the U.S. and would only be accepted at a licensed radioactive disposal facility,” said Robert B. Jackson, professor of environmental science at Duke. “The facility is quite effective in removing metals such as barium from the water but concentrates sulfates, chlorides and bromides. In fact this single facility contributes four-fifths of the total downstream chloride flow at this point.”

The Duke team also analyzed stream-bottom sediments for radium isotopes that are typically found in Marcellus wastewater. “Although the facility’s treatment process significantly reduced radium and barium levels in the wastewater, the amount of radioactivity that has accumulated in the river sediments still exceeds thresholds for safe disposal of radioactive materials,” Vengosh said. “Years of disposal of oil and gas wastewater with high radioactivity has created potential environmental risks for thousands of years to come.”

“While water contamination can be mitigated by treatment to a certain degree, our findings indicate that disposal of wastewater from both conventional and unconventional oil and gas operations has degraded the surface water and sediments,” said Nathaniel R. Warner, a recent Ph.D. graduate of Duke who is now a postdoctoral researcher at Dartmouth College. “This could be a long-term legacy of radioactivity.”

Industry has made efforts to reuse or to transport shale gas wastewater to deep injection wells, but wastewater is still discharged to the environment in some states. “It is clear that this practice of releasing wastewater without adequate treatment should be stopped in order to protect freshwater resources in areas of oil and gas development,” Vengosh said.

The Duke team published their findings Oct. 2 in the peer-reviewed journal Environmental Science & Technology.

Study finds tungsten in aquifer groundwater controlled by pH, oxygen

Two Kansas geologists are helping shed new light on how tungsten metal is leached from the sediment surrounding aquifers into the groundwater. The findings may have implications for human health.

Tungsten is a naturally occurring metal that is primarily used for incandescent light bulb filaments, drill bits and an alternative to lead in bullets. Though it is thought to be nonhazardous to the environment and nontoxic to humans, it can be poisonous if ingested in large amounts. In recent years, tungsten has been tentatively linked to cases of childhood leukemia in the Western U.S.

“Very little is known about the biogeochemistry of tungsten in the environment,” said Saugata Datta, professor of geology at Kansas State University. “We need to understand how this metal is leached from the soils into groundwater because humans can be exposed to tungsten through multiple pathways.”

Datta, along with Chad Hobson, master’s student in geology, Lavonia, Ga., and colleagues at Tulane University and the University of Texas, Arlington, found that the likelihood that tungsten will seep into an aquifer’s groundwater depends on the groundwater’s pH level, the amount of oxygen in the aquifer and the number of oxidized particles in the water and sediment. Analysis also showed that tungsten-IV is the most common form of tungsten in natural sediments.

These latest findings appear in the study “Controls on tungsten concentrations in groundwater flow systems: The role of adsorption, aquifer sediment Fe(III) oxide/oxyhydroxide content, and thiotungstate formation,” published in the journal Chemical Geology.

In addition to the publication, Datta and Hobson presented the findings at the International Conference on Biogeochemistry of Trace Elements.

For the study, researchers looked at Fallon, Nev.; Sierra Vista, Ariz.; and at the Cheyenne Bottoms Refuge near Hoisington, Kan. The sites were chosen based on previous studies analyzing plants and dust collected on trees in the locations. Additionally, these areas have natural tungsten mineral deposits, nearby military bases, and mining and smelting operations in the area, Datta said.

In 2002, the Centers for Disease Control investigated several clusters of acute lymphatic leukemia in both Nevada and Arizona. The investigation found that residents’ urine had tungsten levels above the 95th percentile.

“This was important for us to know because the goal is to clarify valuable information about tungsten’s geochemistry,” Datta said. “So, we needed sites that had tungsten — and enough tungsten to measure easily. The benefit of this study is that tungsten’s geochemistry has been overlooked and until recently, largely unknown. This work will help fill the gaps in the knowledge of tungsten, which is possibly carcinogenic, and help determine its future use.”

Datta and Hobson analyzed sediment samples lining the aquifers while researchers at Tulane University and the University of Texas, Arlington analyzed the groundwater samples. The National Synchrotron Light Source was used for spectroscopic analysis of the individual particles. This helped researchers understand the speciation of tungsten in natural sediments in the environment and helped them detect why tungsten forms organosulphur complexes that can be soluble in groundwater, Datta said. Analysis also showed that tungsten-VI is the most common form of tungsten in natural sediments.

Analysis of the sediment and groundwater showed that iron oxide and oxyhydroxide particles in both substances play a key role in regulating how much tungsten is in the groundwater. The fewer iron oxides or oxyhydroxide particles, the higher the amount of tungsten, Datta said.

Similarly, the team found that the number of tungsten-regulating iron oxide particles is controlled by the pH in the groundwater. A higher pH results in more tungsten entering the water.

“Tungsten is specifically bound to these iron oxides and oxyhydroxides,” Datta said. “One of the major factors controlling tungsten’s mobility and bioavailability is pH. Ranging values of pH can affect how tungsten behaves or transforms between different tungsten species, which have different properties and factors controlling mobility.”

When tungsten is in the water it is surrounded by oxygen atoms and forms an anion, Datta said. When in the presence of phosphates, this anion tends to bind with other transition metals, commonly iron, to form poloyoxometalates. In this form, tungsten can become more soluble in water.

Researchers also found that aquifers with less dissolved oxygen had greater traces of tungsten in the groundwater than aquifers with high dissolved oxygen levels.

The process of tungsten being leached from the surrounding sediment into the groundwater can be reduced if the ironoxides are in the water and the water has a neutral pH level, according to Datta.

The study is part of a three-year, $515,000 National Science Foundation-funded project between Kansas State University and Karen Johannesson at Tulane University that is titled “Collaborative Research: Chemical Hydrogeologic Investigations of Tungsten: Field, Laboratory, and Modeling Studies of an Emerging Environmental Contaminant.” It focuses on biogeochemistry of tungsten’s reaction to the environment and how it is transported from sediments into groundwaters once it becomes geochemically mobilized.

Researchers found response of how plants respond to the changing environment in geological time

<IMG SRC="/Images/575209021.jpg" WIDTH="350" HEIGHT="353" BORDER="0" ALT="1, 3, 5, 7: This is the micro-morphology of fossil Quercus delavayi complex. 2, 4, 6, 8 Micro-morphology of extant Q. delavayi. – ┬ęScience China Press”>
1, 3, 5, 7: This is the micro-morphology of fossil Quercus delavayi complex. 2, 4, 6, 8 Micro-morphology of extant Q. delavayi. – ┬ęScience China Press

Understanding the impact of environmental change on plant traits is an important issue in evolutionary biology. As the only direct evidence of past life, fossils provide important information on the interactions between plants and environmental change. After ten years’ survey, Professor Zhou Zhekun’s group from Kunming Institute of Botany has discovered more than ten well preserved Neogene plant fossil sites in southwestern China which are important to understand past climate and response of plants to the changing climate in this region. Their recent work, entitled “Evolution of stomatal and trichome density of the Quercus delavayi complex since the late Miocene”, was published in CHINESE SCIENCE BULLETIN.2013, Vol 58(21).

Comparing closely related fossils from different geological periods is an efficient method to understand how plants respond to climatic change across a large scale. However, few studies have been carried out due to lack of a continuous fossil record. In their recent study, Prof. Zhou’s group investigated detailed micro-morphology of a dominant element in Neogene fossil sites, Quercus delavayi complex (one oak species) to answer this question.

Their results show that Quercus delavayi complex from different periods share similar leaf morphology, but differ with respect to trichome and stomatal densities. The stomatal density of the Q. delavayi complex was the highest during the late Miocene, declined in the late Pliocene, and then increased during the present epoch. These values show an inverse relationship with atmospheric CO2 concentrations. Since the late Miocene, a gradual reduction in trichome base density has occurred in this complex. This trend is the opposite of that of precipitation, indicating that increased trichome density is not an adaptation to dry environments. These results are important to understand the relationship between plant evolution and climatic change which are important to predict the fate of current biodiversity in a changing environment.

This research project was partially supported by a grant from the National Natural Science Foundation of China and a 973 grant from Department of Science and Technology of China. Knowledge of the past is crucial to understand the future. The researchers suggest the old subject ‘Paleontology’ can reveal long term evolution in the past which is hardly seen in ‘Neontology’ should receive more attention.

Tiny sensor used in smart phones could create urban seismic network

A tiny chip used in smart phones to adjust the orientation of the screen could serve to create a real-time urban seismic network, easily increasing the amount of strong motion data collected during a large earthquake, according to a new study published in the October issue of the Bulletin of the Seismological Society of America (BSSA).

Micro-Electro-Mechanical System (MEMS) accelerometers measure the rate of acceleration of ground motion and vibration of cars, buildings and installations. In the 1990s MEMS accelerometers revolutionized the automotive airbag industry and are found in many devices used daily, including smart phones, video games and laptops.

Antonino D’Alessandro and Giuseppe D’Anna, both seismologists at Istituto Nazionale di Geosifica e Vulcanologia in Italy, tested whether inexpensive MEMS accelerometers could reliably and accurately detect ground motion caused by earthquakes. They tested the LIS331DLH MEMS accelerometer installed in the iPhone mobile phone, comparing it to the earthquake sensor EpiSensor ES-T force balance accelerometer produced by Kinemetrics Inc.

The tests suggest that the MEMS accelerometers can detect moderate to strong earthquakes (greater than magnitude 5) when located near the epicenter. The device produces sufficient noise to prevent it from accurately detecting lesser quakes — a limitation to its use in monitoring strong motion.

D’Alessandro and D’Anna note that the technology is rapidly evolving, and there will soon be MEMS sensors that are sensitive to quakes less than magnitude 5. The real advantage, say the authors, is the widespread use of mobile phones and laptops that include MEMS technology, making it possible to dramatically increase coverage when strong earthquakes occur.

The current state of the MEMS sensors, suggest the authors, could be used for the creation of an urban seismic network that could transmit in real-time ground motion data to a central location for assessment. The rich volume of data could help first responders identify areas of greatest potential damage, allowing them to allocate resources more effectively.

Methane out, carbon dioxide in?

A University of Virginia engineering professor has proposed a novel approach for keeping waste carbon dioxide out of the atmosphere.

Andres Clarens, an assistant professor of civil and environmental engineering at U.Va.’s School of Engineering and Applied Science, and graduate student Zhiyuan Tao have published a paper in which they estimate the amount of carbon dioxide that could be stored in hydraulically fractured shale deposits after the methane gas has been extracted. Their peer-reviewed finding was published in Environmental Science and Technology, a publication of the American Chemical Society.

The team applied their model to the Marcellus Shale geological formation in Pennsylvania and found that the fractured rock has the potential to store roughly 50 percent of the U.S. carbon dioxide emissions produced from stationary sources between 2018 and 2030. According to his estimate, about 10 to 18 gigatonnes of carbon dioxide could be stored in the Marcellus formation alone. The U.S. has several other large shale formations that could provide additional storage.

The researchers’ model is based on historical and projected methane production, along with published data and models for estimating the carbon dioxide capacity of the formations. Clarens said that production records are available for how much methane gas producers have already extracted from the Marcellus Shale, as well as estimates of how much more they expect to extract. That provides a basis for determining how much space will be left in the formation when the methane is gone, he said. Clarens said gas would be adsorbed into the pores of the shale and held securely.

“This would be a way of eating our cake and having it too,” Clarens said. “We can drill the shale, pump out the gas and pump in the carbon dioxide.. I think this will get policymakers’ attention.”

He said his work deals with the chemical feasibility of the idea, and that additional studies must be performed to examine the economical, political and logistical implication.

“My field is carbon management – high-pressure carbon dioxide chemistry,” he said. “Right now, we are emitting huge levels of carbon dioxide, and we need new ideas on ways to store the waste.”

Clarens, who said he has no connection with the oil and gas industry, knows some in the environmental movement oppose hydraulic fracturing because of possible risks to ground and surface waters. However, he thinks this type of extraction is inevitable in many places and it is important to preemptively develop new strategies for handling the environmental implications, especially those related to carbon dioxide.

“There are a lot of people who say we need to get away from carbon-based fuels, and that may be possible in a few decades, but right now, fossil fuels power everything,” he said. “Finding ways to harvest these non-conventional fossil fuel sources without contributing to climate changes is a difficult but important challenge.”

Clarens said he believes he and Tao are the first researchers to propose this strategy. He hopes this paper will contribute to a discourse on how best to responsibly develop this booming resource.

Clarens, who received his doctorate from the University of Michigan, did his undergraduate work at U.Va., receiving a bachelor’s degree in chemical engineering in 1999.